Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ki-Min Park, II Yoon, Joobeom
Seo, Yoon Hee Lee and Shim Sung Lee*

Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Chinju 660-701, South Korea

Correspondence e-mail:
sslee@nongae.gsnu.ac.kr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
H -atom completeness 76%
Disorder in solvent or counterion
R factor $=0.055$
$w R$ factor $=0.186$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

A magnesium(II) complex of 1,10-phenanthroline-2,9dicarboxylate

The title compound, triaqua(1,10-phenanthroline-2,9-dicarboxylato)magnesium(II) dihydrate, $\left[\mathrm{Mg}(\mathrm{PDA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, $\left(\mathrm{H}_{2} \mathrm{PDA}\right.$ is 1,10-phenanthroline-2,9-dicarboxylic acid, $\mathrm{C}_{14} \mathrm{H}_{8^{-}}$ $\mathrm{N}_{2} \mathrm{O}_{4}$) has twofold crystallographic symmetry. The Mg atom is in a distorted pentagonal bipyramidal coordination environment with two N atoms and two O atoms from PDA and one O atom from a water molecule forming the pentagonal plane, and two O atoms from two water molecules occupying axial positions. The crystal structure comprises an infinite twodimensional network of hydrogen-bonded molecules.

Comment

1,10-Phenanthroline-2,9-dicarboxylic acid ($\mathrm{H}_{2} \mathrm{PDA}$) has been used as a simple sensitizing species of luminescent lanthanide ion chelates for analytical applications in aqueous solution (Sammes \& Yahioglu, 1994; Mullins et al., 1996). However, investigations of $\mathrm{H}_{2} \mathrm{PDA}$ complexes with metal ions, such as $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Eu}^{\mathrm{II}}$, have been limited to spectroscopic characterizations in aqueous solution (König \& Ritter, 1981; Templeton \& Pollak, 1989; Sammes et al., 1992; Dyson et al., 1999). To our knowledge, no examples of $\mathrm{Mg}^{\mathrm{II}}$ complexes of H_{2} PDA have been characterized in the solid state. We have prepared the $\mathrm{Mg}^{\text {II }}$ complex of $\mathrm{H}_{2} \mathrm{PDA}$, (I), and report its crystal structure here.

(I)

The title compound (Fig. 1) is located on a twofold axis of symmetry which passes through the Mg and O 3 atoms. The seven-coordinated Mg atom is in a distorted pentagonal bipyramidal geometry. Two N and two O atoms from PDA and one O atom from a water molecule define the pentagonal plane, and the two axial positions are occupied by O atoms derived from two water molecules.

Important bond distances and angles are presented in Table 1. The bond distances between Mg and the PDA donor atoms $\left[\begin{array}{lll}\mathrm{Mg}-\mathrm{O} 1 & 2.3080(17) ~ \AA \\ \mathrm{~A}\end{array} \mathrm{and} \mathrm{Mg}-\mathrm{N} 1 \quad 2.2994\right.$ (19) \AA] are significantly longer than those to coordinated water mol-

Received 26 February 2001
Accepted 9 March 2001
Online 16 March 2001

Figure 1
The structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level (Johnson, 1976). The non-coordinated water molecule has been omitted for clarity. [Symmetry code: (i) $-x+\frac{3}{4},-y+\frac{3}{4}, z$].

Figure 2
Packing diagram of (I) viewed along [100]. Hydrogen bonds are indicated by dashed lines. Displacement ellipsoids are shown at the 30% probability level. All H atoms and the disordered water molecules with lower site occupancy have been omitted for clarity.
ecules [$\mathrm{Mg}-\mathrm{O} 32.055$ (2) \AA and $\mathrm{Mg}-\mathrm{O} 42.0777$ (18) \AA]. This is probably due to the high rigidity of PDA as well as the high affinity of the $\mathrm{Mg}^{\text {II }}$ ion to water molecules. The carboxylate groups of the PDA ligand are almost coplanar with the phenanthroline unit as indicated by the $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ torsion angle of 1.9 (3) ${ }^{\circ}$.

The complexes are inter-connected by hydrogen bonds between the coordinated water molecules, O3 and O4, and the
carboxylate O atoms of adjacent PDA with interaction distances of 2.774 (2) and 2.745 (3) A (Table 2); the equatorial water molecule is hydrogen bonded with the coordinated carboxylate O atoms and the axial water molecules interact with the carbonyl O atoms.

As illustrated in Fig. 2, the complexes associate along the a axis and form columns in the crystal structure. Non-coordinated water molecules also participate in hydrogen bonds and serve to connect the complex units along the b axis. Stacking interactions between centrosymmetrically related phenanthroline units are observed with a plane-to-plane separation of 3.360 (4) Å.

Experimental

H_{2} PDA was synthesized according to the literature (König \& Ritter, 1981). The title compound was crystallized by slow evaporation from the methanol solution prepared by the reaction of equimolar amounts of $\mathrm{H}_{2} \mathrm{PDA}$ and MgSO_{4}.

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ Mo $K \alpha$ radiation
$M_{r}=380.60$
Orthorhombic, Fidd
$a=7.4194$ (12) £
$b=19.044$ (3) \AA
$c=46.943(7) \AA$
$V=6632.8(18) \AA^{3}$
$V=6632.8(18) \AA^{3}$
$Z=16$
$D_{x}=1.525 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

CCD area detector diffractometer	$R_{\text {int }}=0.066$
φ and ω scans	$\theta_{\max }=28.3^{\circ}$
10406 measured reflections	$h=-9 \rightarrow 9$
2063 independent reflections	$k=-25 \rightarrow 25$
1385 reflections with $I>2 \sigma(I)$	$l=-62 \rightarrow 42$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.186$
$S=1.06$
2063 reflections
129 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mg}-\mathrm{O} 3$	$2.055(2)$	$\mathrm{Mg}-\mathrm{N} 1$	$2.2994(19)$
$\mathrm{Mg}-\mathrm{O} 4$	$2.0777(18)$	$\mathrm{Mg}-\mathrm{O} 1$	$2.3080(17)$
$\mathrm{O} 3-\mathrm{Mg}-\mathrm{O} 4$	$89.81(5)$	$\mathrm{O} 3-\mathrm{Mg}-\mathrm{O} 1$	$77.65(5)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Mg}-\mathrm{O} 4$	$179.63(11)$	$\mathrm{O} 4-\mathrm{Mg}-\mathrm{O} 1$	$87.41(7)$
$\mathrm{O} 4-\mathrm{Mg}-\mathrm{N} 1$	$89.28(7)$	$\mathrm{N} 1-\mathrm{Mg}-\mathrm{O} 1$	$68.04(6)$
$\mathrm{N} 1-\mathrm{Mg}-\mathrm{N} 1^{\mathrm{i}}$	$68.64(10)$		

Symmetry codes: (i) $\frac{3}{4}-x, \frac{3}{4}-y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {i }}$	0.991 (1)	1.791 (2)	2.774 (2)	170.6 (1)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {ii }}$	0.856 (2)	1.891 (2)	2.745 (3)	175.8 (1)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 5$	0.922 (2)	1.960 (7)	2.863 (6)	165.7 (4)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\prime}$	0.922 (2)	1.89 (1)	2.80 (1)	169 (2)
$\mathrm{O} 5 \cdots \mathrm{O} 2^{\text {iii }}$			2.866 (7)	
$\mathrm{O} 5^{\prime} \cdots \mathrm{O} 2^{\text {iii }}$			2.71 (2)	
O5 $\cdots \mathrm{OS}^{\text {iv }}$			2.84 (1)	
O5 ${ }^{\prime} \cdots \mathrm{OF}^{\text {,iv }}$			2.73 (3)	

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{4}-y, \frac{1}{4}-z$; (ii) $x-1, y, z$; (iii) $\frac{5}{4}-x, y, \frac{1}{4}-z$; (iv) $x, \frac{5}{4}-y, \frac{1}{4}-z$.

The $\mathrm{C}-\mathrm{H}$ atoms were added at their calculated positions $\left[U_{\text {iso }}=\right.$ $1.2 U_{\text {eq }}(\mathrm{C})$] and refined using a riding model. The H atoms of the coordinated water molecules were located from a difference map but were not refined. The non-coordinated water molecule, O5, is disordered over two sites with occupancies of 0.7 for O 5 and 0.3 for O^{\prime}; H atoms were not included for this molecule.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Siemens, 1996); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The support of the Korea Research Foundation (99-005D00004) is gratefully acknowledged.

References

Dyson, R. M., Lawrance, G. A., Mäcke, H. \& Maeder, M. (1999). Polyhedron, 18, 3243-3251.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
König, E. \& Ritter, G. (1981). J. Inorg. Nucl. Chem. 43, 2273-2280.
Mullins, S. T., Sammes, P. G., West, R. M. \& Yahioglu, G. (1996). J. Chem. Soc. Perkin Trans. I, pp. 75-81.
Sammes, P. G. \& Yahioglu, G. (1994). Chem. Soc. Rev. pp. 327-334.
Sammes, P. G., Yahioglu, G. \& Yearwood, G. D. (1992). J. Chem. Soc. Chem. Commun. pp. 1282-1283.
Siemens (1996), SMART, SAINT (Version 4.0) and SHELXTL (Version 5.03).
Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Templeton, E. F. G. \& Pollak, A. (1989). J. Lumin. 43, 195-205.

